
CS106B
Summer 2013

Handout #05
June 24, 2013

Assignment 1: Welcome to C++!

 Handout and assignment based on an assignment by Eric Roberts and Julie Zelenski.
Thanks to Sophia Westwood for suggesting Flesch-Kincaid readability as an assignment.

As a prelude to the later assignments in this quarter, your first task is to get acclimated to the C++ pro -
gramming language. This assignment contains several C++ tasks that give you a feel for many differ-
ent aspects of the language – functions, primitive types, strings, and even some recursion for color.

Assignment Files Due Tuesday, July 2 at 11:00AM

Email Due Friday, July 5 at 11:00AM

Part 1: Welcome to CS106B!
Your first task is to set up your C++ compiler. If you’re using the machines in Stanford’s public
clusters, you don’t need to install the software. If you’re using you own machine, you should consult
one of the following handouts, depending on the type of machine you have:

• Handout #04M. Downloading Xcode on the Macintosh

• Handout #04P. Downloading Visual Studio for Windows

• Handout #04L. Getting Started on Linux

Once you have the compiler ready, go to the assignments section of the web site and download the
starter file for the type of machine you are using. For either platform, the Assignment1 folder contains
five separate project folders: one for this warmup problem and one for each of the four problems in
Part 2 of the assignment. Open the project file in the folder named 0-Warmup. Your mission in Part 1
of the assignment is simply to get this program running. The source file we give you is a complete C++
program—so complete, in fact, that it comes complete with two bugs. The errors are not difficult to
track down (in fact, we’ll tell you that one is a missing declaration and the other is a missing #include
statement). This task is designed to give you experience with the way errors are reported by the
compiler and what it takes to fix them.

Once you fix the errors, compile and run the program. When the program executes, it will ask for your
name. Enter your name and it will print out a “hash code” (a number) generated for that name. We’ll
talk later in the class about hash codes and what they are used for, but for now just run the program,
enter your name, and record the hash code. You’ll email us this number. A sample run of the program
is shown below:

Once you’ve gotten your hash code, we want you to e-mail it to your section leader and introduce
yourself. You don’t yet know your section assignment, but will receive it via email after signups close,
so hold on to your e-mail until then. You won't learn your section leader until after the due date of
the assignment files, so the email isn't due until Friday, June 5 th 11AM. You should also cc me on

- 1 -

the email(adgress@cs.stanford.edu) so I can meet you as well! Here’s the information to include in
your email:

1. Your name and the hash code that was generated for it by the program.
2. Your year and major (if you are an undergrad) or department (if you are a grad student).

3. When you took CS106A (or equivalent course) and how you feel it went for you.

4. What you are most looking forward to about CS106B.

5. What you are least looking forward to about CS106B.

6. Any suggestions that you think might help you learn and master the course material.

Part Two: Welcome to C++!
Most of the assignments in this course are single programs of a substantial size. To get you started,
however, the first assignment is a series of four short problems that are designed to get you used to
using C++ and to introduce the idea of functional recursion.

Problem 1: Rosencrantz and Guildenstern Flip Heads

Heads. . . .
Heads. . . .
Heads. . . .
A weaker man might be moved to re-examine his faith, if in nothing else at least in the law of
probability.

—Tom Stoppard, Rosencrantz and Guildenstern Are Dead, 1967

Write a program that simulates flipping a coin repeatedly and continues until three consecutive heads
are tossed. At that point, your program should display the total number of coin flips that were made.
The following is one possible sample run of the program:

Problem 2: Combinations and Pascal's Triangle

As mentioned in Chapter 2 of the course reader, the mathematical combinations function c(n, k) is usu-
ally defined in terms of factorials, as follows:

c (n , k)=
n !

k ! (n−k)!

The values of c(n, k) can also be arranged geometrically to form a triangle in which n increases as you
move down the triangle and k increases as you move from left to right. The resulting structure, which
is called Pascal’s Triangle after the French mathematician Blaise Pascal, is arranged like this:

- 2 -

c(0, 0)

c(1, 0) c(1, 1)

c(2, 0) c(2, 1) c(2, 2)

c(3, 0) c(3, 1) c(3, 2) c(3, 3)

c(4, 0) c(4, 1) c(4, 2) c(4, 3) c(4, 4)

Pascal’s Triangle has the interesting property that every entry is the sum of the two entries above it,
except along the left and right edges, where the values are always 1. Consider, for example, the
highlighted entry in the following display of Pascal’s Triangle:

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

This entry, which corresponds to c(6, 2), is the sum of the two entries—5 and 10—that appear above it
to either side. Using this fact, write a recursive implementation of the c(n, k) function that uses no
loops, no multiplication, and no calls to Fact.

Write a simple test program to demonstrate that your combinations function works. If you want an ad-
ditional challenge, write a program that uses c(n, k) to display the first ten rows of Pascal’s Triangle.

Problem 3: Implementing Numeric Conversions

The strlib.h interface exports the following methods for converting between integers and strings:

string integerToString(int n);
int stringToInteger(string str);

The first function converts an integer into its representation as a string of decimal digits, so that, for ex-
ample, integerToString(1729) should return the string "1729". The second converts in the opposite
direction so that calling stringToInteger("-42") should return the integer -42.

Your job in this problem is to write the functions intToString and stringToInt (the names have
been shortened to avoid having your implementation conflict with the library version) that do the same
thing as their strlib.h counterparts but use a recursive implementation. Fortunately, these functions
have a natural recursive structure because it is easy to break an integer down into two components us-
ing division by 10. This decomposition is discussed on page 42 in the discussion of the digitSum
function. The integer 137, for example, breaks down into two pieces, as follows:

- 3 -

1 3 7

1 3 7
n / 10 n % 10

In other words, you can peel off the last digit of the number n by using division and modulus by 10. If
you use recursion to convert the first part to a string and then append the character value correspond-
ing to the final digit, you will get the string representing the integer as a whole.

As a note, it is also possible to split a number into two pieces by separating the first digit rather than the
last. Although this might seem like a more intuitive way of recursively splitting the number apart, we
actually recommend against this approach as it's a bit more complicated to code up.

Your solution should operate recursively and should use no iterative constructs such as for or while.
Also, you shouldn't call the provided integerToString function or any other library function that does
numeric conversions, since that defeats the point of the assignment. ☺

As you work through this problem, you should keep the following points in mind:

• The value that you get when you compute n % 10 is an integer, and not a character. To convert
this integer to its character equivalent you have to add the ASCII code for the character '0' and
then cast that value to a char (for example, char(ch + '0')) If you then need to convert that
character to a one-character string, you can concatenate it with string(), as shown here:

string() + ch

If you are coming from Java, be aware that the Java trick of writing

"" + ch

does not work in C++ and will result in very strange behavior – it might return garbage, or just
outright crash the program!

• You should think carefully about what the simple cases need to be. In particular, you should
make sure that calling intToString(0) returns "0" and not the empty string. This fact may re-
quire you to add special code to handle this case.

• Your implementation should allow n to be negative, as illustrated by the earlier example in
which stringToInt("-42") returns -42. Again, implementing these functions for negative
numbers will probably require adding special-case code.

• It's possible to split apart numbers and strings in many ways. You are free to split them how-
ever you'd like. However, peeling off the last digit as we've suggested is easier than most other
approaches.

We strongly encourage you to test your solution on a variety of inputs. There are many different cases
that you need to cover, and it's easy to accidentally miss one or two of them.

Problem 4: The Flesch-Kincaid Grade-Level Test

(We will finish covering the material necessary to complete this part of the assignment on Monday.)

Many word processing programs (such as Microsoft Word) employ heuristics that give an estimate for
how difficult it is to read a particular passage of text. This makes it possible for authors to evaluate

- 4 -

whether their writings are too complex for their target audience. It also makes it possible for high
school English teachers to save lots of time grading essays. ☺

One automated test for determining the complexity of a piece of text is the Flesch-Kincaid grade level
test, which assigns a number to a piece of text indicating what grade level the computer things is neces-
sary to understand that text. This test makes no attempt to actually understand the meaning of the text,
and instead focuses purely on the complexity of the sentences and words used within that text. Spe-
cifically, the test counts up the total number of words and sentences within the text, along with the total
number of syllables within each of those words. Given these numbers, the grade level score is then
computed using the following formula:

Grade=C 0+C1(
num words

num sentences
)+C2(

num syllables
num words

)

Where C0, C1, and C2 are constants chosen as follows:

C0 = -15.59 C1 = 0.39 C2 = 11.8
(I honestly have no idea where these values came from, but they're the standard values used whenever
this test is performed!) The resulting number gives an estimate of the grade level necessary to under-
stand the text. For example, something with grade level 5.15 could be read by a typical fifth-grader,
while something with grade level 15 would be appropriate for a typical college junior.

Your job is to write a program that, given a piece of text, computes the Flesch-Kincaid grade level
score from that piece of text. When your program starts up, it should prompt the user for a name of a
file containing the text to be read. Your program should continuously reprompt the user until they
enter the name of a valid file.

Once you've opened the file, you will need a way to take the original text and break it up into individu -
al words and punctuation symbols. This will let you count up how many words and sentences there
are. For this purpose, we provide you a TokenScanner class that lets you read a file one “piece” at
a time, where a “piece” is either a punctuation symbol or word. To start off this assignment, see if you
can write a program that will open a file and read it one piece at a time using the TokenScanner.

We did not cover all the functionality of the TokenScanner class in lecture. We recommend taking
the time to look over the documentation for TokenScanner, which is available on the course website
(under “Stanford C++ Library Docs”). In particular, we recommend finding a way to get the
TokenScanner to do the following:

• Skip over whitespace tokens, so you don't have to handle them later on;

• Read directly from a file, which dramatically simplifies the logic; and

• Tokenize strings like isn't as a single token isn't rather than the three tokens isn, ', and t.

As a test, try getting your program to print out all the tokens in the file, one line at a time. We provide
a reference solution so that you can compare your output against ours.

Now that you have the individual tokens, try updating your program so that you can count the total
number of words and sentences in the file. To determine what counts as a word, you can assume that
any token that starts with a letter counts as a word, so apple and A-1 would both be considered words.
As an approximation of the number of sentences, you can just count up the number of punctuation
symbols that appear at the ends of sentences (namely, periods, exclamation points, and question
marks). This isn't entirely accurate, but it's a good enough approximation. As a minor edge case, if a
file doesn't appear to have any words or sentences in it, you can just pretend that it contains a single
word and a single sentence (which prevents a division by zero error when evaluating the above for-

- 5 -

mula). Then, update your program to print out a readout of the total number of words and sentences it
thinks exists in the file.

Before moving onward, why not take some time to test that your program works correctly? We have
provided our own reference implementation of this program, which you can use to see how many
words and sentences are in a given file. Try comparing our output to your output on some short sample
files. Are you getting the same output as us? If not, take a minute to track down what you're doing dif-
ferently. If you're being more intelligent than our program, you might get more accurate answers than
our reference solution. However, a disparity here might also mean that you have a bug somewhere.

Finally, count up how many syllables are in each of the words that you find. Getting an exact syllable
count for each word is almost impossible, since this varies dramatically based on pronunciation (for ex-
ample, the word “are” is just one syllable, while “area” is three). To approximate the number of syl-
lables in a word, you should count up the number of vowels in the word (including 'y'), except for

• Vowels that have vowels directly before them, and

• The letter e, if it appears by itself at the end of a word.

For example, the word “program” would be counted as having two syllables, one for 'o' and one for 'a';
the word “peach” would have one syllable since “ea” appear next to one another; and the word “de-
duce” would have two syllables, since the final 'e' does not contribute to the total. Notice that under
this definition, the word “me” would have zero syllables in it, since the final “e” doesn't contribute to
the total. To address this, you should assume that all words have at least one syllable in them. This ap-
proximation of syllable counts isn't exactly correct. In fact, it incorrectly says that there are just two
syllables in the word “syllable.” However, for our purposes, this is totally fine.

Before moving on, we suggest trying out your program on a few sample inputs and checking it against
our reference program. Counting syllables is probably the trickiest part of this assignment, so play
around with our sample inputs and check that you're counting correctly.

Once you've counted up the total number of words, sentences, and syllables, you can compute the
Flesch-Kincaid Grade Level score for individual files. Try running your program on some of the files
we've provided. Do any of the results surprise you? Try finding a piece of text from one of your favor-
ite books (say, one of the Harry Potter titles, Fifty Shades of Grey, or perhaps Programming Abstrac-
tions in C++). How do those scores compare to our sample files? If you find anything interesting, let
us know about it in your submission!

If you'd like some extra credit, try improving upon our way of counting words, syllables, or sentences.
You could also try implementing a different algorithm for computing readability. Play around and see
if you find anything interesting!

Possible Extensions

Interested in exploring onward a bit? Here are some suggestions on how to get started.

• Consecutive Heads: Could you adjust the program so that you count how many flips are neces-
sary to find some arbitrary sequence of heads and tails? For example, how many flips, on aver-
age, are necessary to get the sequence H T H T T? How does this compare to the number of
flips required to get H H H H H? Why is that?

• Pascal's Triangle: Pascal's triangle has a huge number of interesting mathematical properties.
Vi Hart describes one of them in this video: http://www.youtube.com/watch?v=Yhlv5Aeuo_k.
Could you update your program to display Pascal's triangle and show off some of its mysterious
properties?

- 6 -

http://www.youtube.com/watch?v=Yhlv5Aeuo_k

• Numeric Conversions: Could you update your program to convert Roman numerals into in-
tegers? Or perhaps numbers written in a different base, like hexadecimal (base-16) or binary
(base-2) into integers?

• Flesch-Kincaid Readability: Can you make the program better at counting syllables? Or per-
haps try to be more intelligent about how sentences are handled? Could you try measuring
some other property of a piece of text in order to determine its complexity?

There was an interesting article in a recent issue of the New Yorker discussing how a researcher
measured the complexity of various pieces of rap music over time (you can read the article at
http://www.newyorker.com/talk/2013/04/01/130401ta_talk_wilkinson). Can you verify their
results? Or could you perform a similar analysis on a different data set?

- 7 -

http://www.newyorker.com/talk/2013/04/01/130401ta_talk_wilkinson

	Problem 1: Rosencrantz and Guildenstern Flip Heads
	Problem 2: Combinations and Pascal's Triangle
	Problem 3: Implementing Numeric Conversions
	Problem 4: The Flesch-Kincaid Grade-Level Test
	Possible Extensions

